PHOTOCHEMICAL SYNTHESIS OF NEW SULFUR-CONTAINING POLYCYCLIC AROMATIC COMPOUNDS

ANTHRA[2,1-b]THIOPHENE DERIVATIVES

Kazuhiro MARUYAMA, Kiichiro MITSUI, and Tetsuo OTSUKI
Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

6,11-Anthra[2,1-b]thiophenedione 3 was yielded(62%) in the photochemical reaction of 2-bromo-3-methoxy-1,4-naphthoquinone 1 with 1-pheny1-1-(2-thieny1)ethylene 2. The reduction of 3 gave anthra[2,1-b]thiophenes.

Recently the present authors have reported on the photochemical synthesis of 7,12-benz-[a]anthracenediones from 1,4-naphthoquinones and 1,1-diarylethylenes. $^{1)}$ The work was extended to the convenient synthesis of new sulfur-containing polycyclic aromatic compounds — anthra-[2,1-b]thiophene derivatives, 3, 5, and 6.

On irradiating a benzene solution (25 ml) of 2-bromo-3-methoxy-1,4-naphthoquinone $\frac{1}{1}$ (0.5 mmol) and 1-phenyl-1-(2-thienyl)ethylene $\frac{2}{2}$ (1 mmol)²⁾ by a high pressure Hg arc lamp for 4h, the quinone was found to be consumed completely. Addition of methanol(ca.1 ml) to the concentrated reaction mixture (ca. 5 ml) resulted in the precipitation of yellow crystals, which were recrystallized from CHCl₃-CH₃OH to give light yellow needles; 4-phenyl-6,11-anthra[2,1-b]thiophenedione 3, mp 221.0-221.5°C, yield:62%, Mass:m/e=340(M⁺), IR(KBr):1670 cm⁻¹, NMR(CDCl₃): δ ;7.2-8.4(10H,m), 8.27(1H,s), 8.84(1H,d,J=6Hz), UV max(CHCl₃):413nm(ϵ :4.7x10³), 378(sh)(3.8x10³), 303(sh)(3.8x10⁴), 292(4.1x10⁴), 252(2.6x10⁴). 5-(2-Thienyl)-7,12-benz[a]anthracenedione 4 was also isolated as a minor product from the reaction mixture, yellow-orange needles, mp 182.0-183.5°C, yield: 8%, Mass:m/e=340(M⁺), IR(KBr):1670 cm⁻¹, NMR(CDCl₃): δ ;7.1-8.5(10H,m), 8.34(1H,s), 9.65(1H,dd,J=9, 2Hz), UV max(CHCl₃):429nm(ϵ :5.2x10³), 345(sh)(6.2x10³), 292(3.5x10⁴), 248(2.9x10⁴).

Reduction of 3 by LiAlH₄ in THF gave 5 in a yield of 32%; 4-phenylanthra[2,1-b]thiophene 5: pale yellow crystals, mp 155.5-157.0°C, Mass: m/e=310(M⁺), IR(KBr): neither OH nor CO, NMR(CDCl₃):

C6H5
$$\stackrel{5}{\sim}$$

a) LiAlH₄,THF, reflux, 5h

b) Zn-Ac₂0, reflux, 1h

c) Raney-Ni(W-7), C₆H₆-C₂H₅OH, reflux, 4h

d) [0]

δ;7.1-8.3(12H,m), 8.42(1H,br,s), 8.77(1H,br,s), UV max(CDC1₃): 388nm(ε:8.8x10³), 368(1.2x10⁴), 350(8.8x10³), 337(sh)(5.5x10³), 293(6.8x10⁴), 284(sh)(5.9x10⁴), 256(sh)(4.2x10⁴), 248(sh)(3.8x 10⁴). Moreover, 6,11-diacetoxy-4-phenylanthra[2,1-b]thiophene 6 was also yielded by reductive acetylation of 3; 6: slightly yellow crystals, mp 263-265°C, yield:60%, Mass:m/e=426(M⁺), IR(KBr):1755 cm⁻¹, NMR(CDC1₃): δ; 2.61(3H,s), 2.69(3H,s), 7.1-8.0(11H,m), 8.24(1H,d,J=6Hz), UV max(CHC1₃):402nm(ε:1.2x10⁴), 380(1.4x10⁴), 362(1.1x10⁴), 345(sh)(7.1x10³), 297(6.8x10⁴), 275(5.9x10⁴), 257(sh)(4.0x10⁴), 246(3.5x10⁴).

On the other hand, desulfurization of 3 by Raney-Ni(W-7) in $C_6H_6-C_2H_5$ 0H resulted in the formation of 1-ethyl-3-phenyl-9,10-anthracenedione 7(yield:13%), yellow needles, mp 133.0-134.5°C, Mass: m/e=312(M⁺), IR(KBr):1650 cm⁻¹, NMR(CDCl $_3$): δ ;1.38(3H,t,J=8Hz), 2.88(2H,q,J=8Hz), 7.1-8.6(11H,m), UV max(CHCl $_3$): 435nm (sh)(ϵ :7.3x10), 315(3.3x10 3), 263(3.9x10 4).

Although as a synthetic alternative we found that the thermal Diels-Alder reaction $^{3)}$ of 1,4-naphthoquinone with 2 in acetic acid(100h, 5h) gave 3(yield: 6%), the yield of the present photochemical reaction was better than that.

References and Notes

- K. Maruyama and T. Otsuki, Chem. Lett., (1975) 87.
 K. Maruyama and T. Otsuki, and K. Mitsui, Bull. Chem. Soc. Jpn., 49, 3361 (1976)
- 2) The compound 2 was synthesized via Grignard reaction of methyl magnesium bromide with phenyl 2-thienyl ketone and the subsequent dehydration of the resulting alcohol (overall yield:77%).
- 3) A similar Diels-Alder reaction of 1,4-benzoquinone with 2-vinyl thiophene was reported to yield 6,9-naphtho[2,1-b]thiophenedione. Cf. W.Davies and Q. N. Porter, J. Chem. Soc., (1957) 4957.

(Received May 23, 1977)